Establishing Communication between Neuronal Populations through Competitive Entrainment
نویسندگان
چکیده
The role of gamma frequency oscillation in neuronal interaction, and the relationship between oscillation and information transfer between neurons, has been the focus of much recent research. While the biological mechanisms responsible for gamma oscillation and the properties of resulting networks are well studied, the dynamics of changing phase coherence between oscillating neuronal populations are not well understood. To this end we develop a computational model of competitive selection between multiple stimuli, where the selection and transfer of population-encoded information arises from competition between converging stimuli to entrain a target population of neurons. Oscillation is generated by Pyramidal-Interneuronal Network Gamma through the action of recurrent synaptic connections between a locally connected network of excitatory and inhibitory neurons. Competition between stimuli is driven by differences in coherence of oscillation, while transmission of a single selected stimulus is enabled between generating and receiving neurons via Communication-through-Coherence. We explore the effect of varying synaptic parameters on the competitive transmission of stimuli over different neuron models, and identify a continuous region within the parameter space of the recurrent synaptic loop where inhibition-induced oscillation results in entrainment of target neurons. Within this optimal region we find that competition between stimuli of equal coherence results in model output that alternates between representation of the stimuli, in a manner strongly resembling well-known biological phenomena resulting from competitive stimulus selection such as binocular rivalry.
منابع مشابه
Dynamic Effective Connectivity of Inter-Areal Brain Circuits
Anatomic connections between brain areas affect information flow between neuronal circuits and the synchronization of neuronal activity. However, such structural connectivity does not coincide with effective connectivity (or, more precisely, causal connectivity), related to the elusive question "Which areas cause the present activity of which others?". Effective connectivity is directed and dep...
متن کاملStudents' Points of View Regarding Effective Factors in Establishing Communication between Students and Faculty Members
Introduction: In order to improve the educational process, it is highly important to recognize effective factors in establishing communication between students and faculty member. This study was performed to determine students' points of view concerning such factors. Methods: In this descriptive-cross sectional study, 162 students from Arak Medical University were selected through stratified ...
متن کاملDisordered speech disrupts conversational entrainment: a study of acoustic-prosodic entrainment and communicative success in populations with communication challenges
Conversational entrainment, a pervasive communication phenomenon in which dialogue partners adapt their behaviors to align more closely with one another, is considered essential for successful spoken interaction. While well-established in other disciplines, this phenomenon has received limited attention in the field of speech pathology and the study of communication breakdowns in clinical popul...
متن کاملSelective neuronal entrainment to the beat and meter embedded in a musical rhythm.
Fundamental to the experience of music, beat and meter perception refers to the perception of periodicities while listening to music occurring within the frequency range of musical tempo. Here, we explored the spontaneous building of beat and meter hypothesized to emerge from the selective entrainment of neuronal populations at beat and meter frequencies. The electroencephalogram (EEG) was reco...
متن کاملPhase-Coherence Transitions and Communication in the Gamma Range between Delay-Coupled Neuronal Populations
Synchronization between neuronal populations plays an important role in information transmission between brain areas. In particular, collective oscillations emerging from the synchronized activity of thousands of neurons can increase the functional connectivity between neural assemblies by coherently coordinating their phases. This synchrony of neuronal activity can take place within a cortical...
متن کامل